

Abstracts

Ferroelectric Phase Shifters

R. Das. "Ferroelectric Phase Shifters." 1967 G-MTT International Microwave Symposium Program and Digest 67.1 (1967 [MWSYM]): 185-187.

A diagram of the microstrip ferroelectric phase shifter is shown in Fig. 1(a). The nominal thickness of the ferroelectric material is 10 mils. As the dielectric constant of the ferroelectric is very high, the impedance of the microstrip line (~ 15 mils wide) is comparatively low. For matching purposes quarter-wave transformers of TiO_2 were used. A ceramic ferroelectric material containing 68.5 per cent SrTiO_3 and 31.5 per cent PbTiO_3 (PS 68.5) was used in the experiments. For a TEM-mode propagation the insertion phase of a transmission line of length l is given by βl . Fig. 2 shows the insertion phase of one of the units as measured with a phase discriminator. The total insertion phase at 3.05 Gc/S is 4.434 lambda. Subtracting the insertion phase of the connectors and the quarter-wave transformers the insertion phase of the ferroelectric material alone is 3.486 lambda. On the application of a biasing voltage, the differential phase shift is given by $\Delta\phi = (\beta_1 - \beta_2)$ where β_1 and β_2 are the phase constants without and with bias respectively.

[Return to main document.](#)